SHS Math Club 2009-10 Math Toolbox

SHS Math Toolbox

I. Sequences

- a. <u>Arithmetic Sequence</u>
 - i. Definition= in an arithmetic series, the difference between terms is constant. Ex: 4 + 10 + 16 + 22... they all have a difference of six between terms.
 - ii. Formula for sum of terms in sequence= (1/2) * n * (a+z)
 - 1. n= number of terms in the sequence
 - 2. a =first term in sequence
 - 3. z = last term in sequence
 - iii. Answer to example if the sequence goes up to 100 is : $(1/2) \times 17(4+100) = 884$
- b. Geometric Sequence
 - i. Definition= it is a sequence such that each successive term is obtained from the previous term by multiplying a fixed number called a ratio. Ex: 3 + 6 + 12 + 24 + 48 + 96
 - ii. Formula for sum of terms in sequence
 - 1. Finite Geometric Sequence = $(a(1-r^n))/(1-r)$
 - a. a= first term in sequence
 - b. r= common ratio
 - c. n= number of terms
 - d. note: r does not equal 0
 - 2. Infinite Geometric Sequence = a/(1-r)
 - a. If the absolute value of r is greater than or equal to one, then the infinite series does not have a sum
- c. Figurative Number Sequences
 - i. Triangular numbers
 - 1. Equation = n(n+1)/2.
 - 2. First terms of sequence= 1, 3, 6, 10, 15, 21, 28
 - 3. n= order of number in sequence. Ex: if n = 3, then look for the third term in the sequence (3(4)/2) = 6.
 - ii. Square numbers
 - 1. Equation = n^2
 - 2. First terms of sequence = 1, 4, 9, 16, 25, 36, 49
 - 3. n= order of number in sequence.
 - 4. Try this: What is the sum of the first "n" odd positive numbers??
 - iii. Pentagonal numbers + beyond = n(3n-1)/2, n(4n-2)/2, n(5n-3)/2...

II. <u>Geometric Formulas</u>

- a. The Pythagorean Theorem
 - i. $a^2 + b^2 = c^2$
 - ii. only works when "a" and "b" are the lengths of the legs of a right triangle, and "c" is the hypotenuse
 - iii. Pythagorean triples:
 - 1. 3, 4, 5 $(3^2 + 4^2 = 5^2) (9 + 16 = 25)$
 - 2. 8, 15, 17 $(8^2 + 15^2 = 17^2)(64 + 225 = 289)$
 - 3. 5, 12, 13
 - 4. 7, 24, 25
 - 5. 20, 21, 29
 - 6. 12, 35, 37
 - 7. 9, 40, 41
 - 8. 11, 60, 61
 - Note: If you double "a" and "b", and "c", you can get a Pythagorean triple that is also the same as the old one (ex: 3, 4, 5 double = 6, 8, 10 (36 + 64 = 100)). Those triples are not repeat listed here.
- b. Triangle Formulas (not including Pythagorean)
 - i. The 45-45-90 degree triangle
 - 1. Properties are:
 - a. It is half a square
 - b. Hypotenuse = S * sqrt(2) if S is the side length of the leg
 - ii. The 30-60-90 degree triangle
 - 1. Properties are:
 - a. Half of an equilateral triangle
 - b. If shortest leg = S, then hypotenuse = 2S, and the long leg = S squareroot(3)
 - iii. Sine, Cosine, and Tangent
 - 1. Sine of an angle = opposite leg / hypotenuse
 - 2. Cosine of an angle = adjacent leg / hypotenuse
 - 3. Tangent of an angle = opposite leg / adjacent leg
 - 4. $\sin^2 x + \cos^2 x = 1$
 - 5. $\tan(x) = \sin(x) / \cos(x)$
 - 6. $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
 - 7. $\cos(x+y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
 - 8. tan(x+y) = (tan(x) + tan(y))/(1+tan(x)tan(y))
 - 9. Note: you are not expected to memorize 6, 7, 8 they are just for fun, and 1, 2, 3 ONLY work in a right triangle!!!
 - 10. Many... many... more
 - iv. Heron's Formula
 - 1. Area of triangle = sqrt((sp) * (sp a) * (sp b) * (sp c))
 - a. Sp= semi-perimeter
 - b. a= first side, b= second side, c = third side
 - c. Works for any triangle

- c. Properties of Polygons
 - i. Number of diagonals in a polygon with "n" sides 1. n(n-3)/2
 - ii. Number of degrees in an n-sided polygon1. 180(n-2)
 - iii. Sum of the exterior angles of any polygon1. 360 degrees

III. Miscellaneous Geometry

- a. Space Diagonal of a cube : S * sqrt(3) where S is one length of the cube
- b. Areas and Volumes
 - i. Area of Square = s^2
 - ii. Area of Square = $(d^2)/2$
 - 1. d = diagonal
 - iii. Area of a rhombus $(d_1 * d_2)/2$
 - 1. d1 and d2 are the diagonals
 - iv. Area of triangle = $\frac{1}{2} * b*h$
 - 1. b=base, h=height
 - v. Area of triangle = $\frac{1}{2} * b * c * sin(A)$
 - 1. b= adjacent side 1, c = adjacent side 2, and A = the angle for which the sides b,c are adjacent to
 - vi. Area of circle = (pi) * r^2
 - 1. r= radius
 - vii. Area of trapezoid = $\frac{1}{2} * h(b_1 + b_2)$
 - 1. $h = height, b_1; b_2$ are the two bases
 - viii. Volume of cylinder= B * h
 - 1. B= area of base and h= height
 - ix. Volume of cone= (1/3) * B * h
 - x. Volume of sphere = $(4/3) * (pi) * r^3$
 - xi. Surface area of sphere = $4 * (pi) * r^2$

IV. Factoring Method

- a. Factor out any common factors
- b. If it is two terms, check whether it can be rewritten as the difference of two cubes, or the sum of two cubes
- c. If it is three terms, check for the perfect square trinomials
- d. If it has more than three terms, try to factor by grouping

V. <u>Combinations/Permutations</u>

- a. Number of permutations of "n" different things: i. n!
- b. Number of permutations of "n" things where "r" things are the same: i. n!/r!
- c. Number of permutations of "n" things taken "r" at a time: i. n!/(n-r)!
- d. Number of combinations of "n" things taken "r" at a time: i. n!/(r! * (n-r)!)
 - ii.

VI. List of basic squares/cubes

Number (n)	Square (n ²)	Cube (n^3)
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125
6	36	216
7	49	343
8	64	512
9	81	729
10	100	1000
11	121	1331
12	144	1728

VII. List of Factorials

- a. Expressed as "n!"
- b. n! = n * (n-1) * (n-2) * (n-3)... * 3 * 2 * 1

Number (n)	Factorial (n!)
0	1
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
8	40320
9	362880
10	3628800